From research institute to university faculty – pedagogic challenges for field-oriented educations

Egon Noe & Hugo F. Alrøe, Group on education and learning
Faculty for Agricultural Sciences, Aarhus University

Published in Danish in MONA: Matematik og Naturfagsdidaktik (journal for the didactics of mathematics and science) 2009 – 3: 69-77.

Abstract
The new educations established at the Faculty of Agricultural Science at Aarhus University are not well defined disciplinary or professional educations, but what we call field oriented educations. Such educations are multidisciplinary by nature, and the graduates must be able to fulfil many different jobs in relation to the field in question. In field oriented educations there are special educational and didactic choices to be made regarding the content and delimitation of the curriculum. With research based, problem and case oriented teachings, the Faculty aims to build competences in research-like approaches to complex problems as well as in communication and cooperation across disciplines and perspectives.
Table 1. Overview of three types of academic educations: discipline-oriented, profession-oriented and field-oriented.

<table>
<thead>
<tr>
<th>Focus and demarcation</th>
<th>Focus</th>
<th>Profession</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Observation of a certain aspect of the world</td>
<td>Carrying out a certain job function</td>
<td>Developing a delimited section of the world</td>
</tr>
<tr>
<td>Profession</td>
<td>Medicine, teacher, law, nursing, engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Agricultural science, information technology, biotechnology, business economics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples of educations</th>
<th>Examples of educations</th>
<th>Examples of educations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Physics, chemistry, mathematics, biology, sociology</td>
<td></td>
</tr>
<tr>
<td>Profession</td>
<td>Medicine, teacher, law, nursing, engineering</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Agricultural science, information technology, biotechnology, business economics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research</th>
<th>Research</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Develop and refine a certain observational perspective that is used across professions and fields.</td>
<td></td>
</tr>
<tr>
<td>Profession</td>
<td>Produce knowledge in relation to the development of a certain practice, using knowledge from many different perspectives.</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Explore qualities and connections in a certain system, using methods that involve several perspectives and theories.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education</th>
<th>Education</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Entering the social structures of a certain discipline and its discourse, methods, tools, examples, concepts and rationale.</td>
<td></td>
</tr>
<tr>
<td>Profession</td>
<td>Acquiring applied and ready-to-use knowledge. Develop abilities to transform knowledge to practice. Analyse concrete problems.</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Develop a research-like approach to studying a complex field. Crossdisciplinary. Problem- and case-oriented.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning goals</th>
<th>Learning goals</th>
<th>Learning goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Master the theories and methods of the discipline and describe its canon and key examples. Achieving a critical and contributing relation to the observational perspective of the discipline.</td>
<td></td>
</tr>
<tr>
<td>Profession</td>
<td>Being able to give an account of a large amount of relevant knowledge within the profession. Incorporate and test new knowledge in relation to application. Being reflexive and critical towards ones own practice. Being able to communicate across theory and practice.</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Build an academic ability to become acquainted with new theories and methods. Develop skills in communicating observations across disciplines and professions. Achieve abilities to analyse and handle complex problems.</td>
<td></td>
</tr>
</tbody>
</table>

References
